Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sadiq-ur-Rehman, ${ }^{\text {a }}$ Saqib Ali, ${ }^{\text {b }}$ Saira Shahzadi ${ }^{\text {b }}$ and Masood Parvez ${ }^{\text {c* }}$

${ }^{\text {a }}$ Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan, ${ }^{\text {b }}$ Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ${ }^{\text {c }}$ Department of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

Correspondence e-mail: parvez@ucalgary.ca

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.042$
$w R$ factor $=0.114$
Data-to-parameter ratio $=9.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(Z)-3-(4-Nitrophenyl)-2-phenyl-2-propenoic acid monohydrate

In the crystal structure of the title compound, $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{4} \cdot-$ $\mathrm{H}_{2} \mathrm{O}$, there are hydrogen-bonded clusters involving conventional and unconventional hydrogen bonds of the types $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$. Pairs of molecules lie parallel to each other in a head-to-tail fashion, exhibiting strong $\pi-\pi$ overlapping.

Comment

Carboxylate ligands have been widely used in coordination chemistry and their complexes are generally known to be stable (Oldham et al., 1987). Recently, much effort has been devoted to the self-assembly of organic and inorganic molecules in the solid state because it extends the range of new solids with desirable physical and chemical properties (Canty \& van Koten, 1995). In this paper, we report the structure of such a compound, (I), that has been synthesized in our laboratory.

(I)

The structure of (I) (Fig. 1) is composed of strongly hydrogen-bonded clusters involving all O atoms of the acid and water of solvation (Fig. 2); details of the hydrogenbonding geometry are given in Table 2. $\mathrm{O} 5-\mathrm{H} 51 \cdots \mathrm{O} 4$ is a strong bond with an $\mathrm{H} \cdots \mathrm{O}$ distance of $2.19 \AA$, while the second H atom of the water of solvation is involved in two rather weaker hydrogen bonds (H52 ..O3 and H52 . O O1), with distances of 2.39 and $2.42 \AA$, respectively. In addition to the conventional hydrogen bonds, an unconventional interaction of the type $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ is also present.

The molecular dimensions in (I) are in agreement with the dimensions reported for similar structures, viz. (Z)-methyl β-p-nitrophenyl- α-phenyl acrylate, (E)-methyl β - p-nitrophenyl- α phenyl acrylate, and (E)-methyl β-methyl- β - p-nitrophenyl- α phenyl acrylate (Tinant et al., 1983), 3-(4-nitrophenyl)-2phenylacrylic acid, its ammonium salt and 3-methoxyphenyl

Received 20 June 2006
Accepted 24 June 2006
derivative (Kuleshova et al., 2003) and an Sn complex of 3-(4-nitrophenyl)-2-phenylacrylic acid (Sadiq-ur-Rehman et al., 2004).

The benzene rings are oriented at 55.12 (7) ${ }^{\circ}$ with respect to each other while the mean plane of the carboxylate group ($\mathrm{C} 1 /$ $\mathrm{C} 2 / \mathrm{O} 1 / \mathrm{O} 2)$ lies at an angle of $77.33(10)^{\circ}$ with respect to the mean plane of phenyl ring C10-C15. The nitro group is twisted at an angle of $11.02(13)^{\circ}$ from the mean plane of benzene ring C4-C9.

Pairs of molecules lie parallel to each other in a head-to-tail fashion such that the nitrophenyl ring overlaps the phenyl ring of a symmetry-related molecule (symmetry code: $\frac{1}{2}+x, \frac{3}{2}-y$, $2-z$) and vice versa, thereby exhibiting strong $\pi-\pi$ overlapping; the separation between the least-squares planes of these rings is $3.39 \AA$.

Experimental

A mixture of phenylacetic acid (0.15 mol), p-nitrobenzaldehyde (0.15 mol), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.095 \mathrm{~mol})$ and acetic anhydride $(0.38 \mathrm{~mol})$ was slowly raised to $353-373 \mathrm{~K}$ and maintained at this temperature range for 24 h . To the hot solution, $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$ and $10 \% \mathrm{HCl}(100 \mathrm{ml})$ were added. The mixture was stirred at room temperature for 2 h and filtered. The solid mass obtained was recrystallized from commercial ethanol. Yellow crystals of (I) suitable for crystallographic studies were obtained after three weeks.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	$Z=4$
$M_{r}=287.26$	$D_{x}=1.455 \mathrm{Mg} \mathrm{m}^{-3}$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$	Mo $K \alpha$ radiation
$a=7.578(2) \AA \AA \AA$	$\mu=0.11 \mathrm{~mm}^{-1}$
$b=10.282(2) \AA$	$T=173(2) \mathrm{K}$
$c=16.832(4) \AA$	Prism, colorless
$V=1311.5(5) \AA^{3}$	$0.18 \times 0.15 \times 0.12 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer ω and φ scans
Absorption correction: multi-scan (SORTAV; Blessing, 1997)
$T_{\text {min }}=0.980, T_{\text {max }}=0.987$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.114$
$S=1.08$
1855 reflections
198 parameters
H-atom parameters constrained
$Z=4$
D_{x}. 1.555 M
Mo $K \alpha$ radiation
$T=173$ (2) K
Prism, colorless
$0.18 \times 0.15 \times 0.12 \mathrm{~mm}$

26803 measured reflections
1855 independent reflections
1280 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.116$
$\theta_{\text {max }}=28.3^{\circ}$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.055 P)^{2}\right. \\
&+0.248 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.026 (4)

Figure 1
ORTEPII drawing (Johnson, 1976) of (I), with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates a hydrogen bond.

Figure 2
ORTEPII drawing (Johnson, 1976) of the packing, showing the hydrogen bonding (dashed lines).

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}$	0.84	1.84	2.673 (3)	171
O5-H51 ${ }^{\text {O }}{ }^{\text {a }}{ }^{\text {i }}$	0.82	2.19	2.978 (3)	161
O5-H52 ${ }^{\text {O }} 3^{\text {ii }}$	0.82	2.39	2.935 (3)	125
O5-H52 $\cdot \mathrm{O} 1^{\text {iii }}$	0.82	2.42	3.159 (3)	151
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\text {i }}$	0.95	2.54	3.476 (4)	170

Symmetry codes: (i) $\quad-x+\frac{1}{2},-y+1, z-\frac{1}{2} ; \quad$ (ii) $\quad-x, y-\frac{1}{2},-z+\frac{1}{2} ; \quad$ (iii)
$x-\frac{1}{2},-y+\frac{1}{2},-z$.
Due to lack of significant anomalous dispersion effects, Friedel pairs were merged. The H atoms were located in difference Fourier syntheses and were included in the refinement at geometrically idealized positions, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $\mathrm{O}-\mathrm{H}=0.84 \AA$. The $\mathrm{O}-$ H bonds for water were fixed at $0.82 \AA$. During the refinement, $U_{\text {iso }}(\mathrm{H})$ values were set at 1.5 (hydroxyl) and 1.2 (the rest) times $U_{\text {eq }}$ of the atoms to which they were bonded.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure:

SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

References

Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Canty, A. J. \& van Koten, G. (1995). Acc. Chem. Res. 28, 406-413.
Fan, H.-F. (1991). SAPI91. Rigaku Corporation, Tokyo, Japan.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kuleshova, L. N., Khrustalev, V. N., Suponitsky, K. Y., Antipin, M. Y., Gusev, D. V. \& Bobrikova, E. S. (2003). Kristallografiya, 48, 78-88; Crystallogr. Rep. 48, 73-83.
Oldham, C., Wilkinson, G., Gillard, R. D. \& McCleverty, J. A. (1987). Comprehensive Coordination Chemistry. p. 435. Oxford: Pergamon Press.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sadiq-ur-Rehman, Ali, S., Badshah, A., Malik, A., Ahmed, E., Jin, G.-X. \& Tiekink, E. R. T. (2004). Appl. Organomet. Chem. 18, 401-408.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tinant, B., Touillaux, R., Declercq, J. P., van Meerssche, M., Leroy, G. \& Weiler, J. (1983). Bull. Soc. Chim. Belg. 92, 865-875.

[^0]: © 2006 International Union of Crystallography All rights reserved

