Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sadiq-ur-Rehman,^a Saqib Ali,^b Saira Shahzadi^b and Masood Parvez^c*

^aDepartment of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan, ^bDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ^cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

Correspondence e-mail: parvez@ucalgary.ca

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.004 Å R factor = 0.042 wR factor = 0.114 Data-to-parameter ratio = 9.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the crystal structure of the title compound, $C_{15}H_{11}NO_{4}$ - H_2O , there are hydrogen-bonded clusters involving conventional and unconventional hydrogen bonds of the types $O-H \cdots O$ and $C-H \cdots O$. Pairs of molecules lie parallel to each other in a head-to-tail fashion, exhibiting strong $\pi-\pi$ overlapping.

(Z)-3-(4-Nitrophenyl)-2-phenyl-2-propenoic

Comment

acid monohydrate

Carboxylate ligands have been widely used in coordination chemistry and their complexes are generally known to be stable (Oldham *et al.*, 1987). Recently, much effort has been devoted to the self-assembly of organic and inorganic molecules in the solid state because it extends the range of new solids with desirable physical and chemical properties (Canty & van Koten, 1995). In this paper, we report the structure of such a compound, (I), that has been synthesized in our laboratory.

The structure of (I) (Fig. 1) is composed of strongly hydrogen-bonded clusters involving all O atoms of the acid and water of solvation (Fig. 2); details of the hydrogenbonding geometry are given in Table 2. $O5-H51\cdots O4$ is a strong bond with an $H\cdots O$ distance of 2.19 Å, while the second H atom of the water of solvation is involved in two rather weaker hydrogen bonds ($H52\cdots O3$ and $H52\cdots O1$), with distances of 2.39 and 2.42 Å, respectively. In addition to the conventional hydrogen bonds, an unconventional interaction of the type $C-H\cdots O$ is also present.

The molecular dimensions in (I) are in agreement with the dimensions reported for similar structures, *viz.* (Z)-methyl β -*p*-nitrophenyl- α -phenyl acrylate, (E)-methyl β -*p*-nitrophenyl- α -phenyl acrylate, and (E)-methyl β -methyl- β -*p*-nitrophenyl- α -phenyl acrylate (Tinant *et al.*, 1983), 3-(4-nitrophenyl)-2-phenylacrylic acid, its ammonium salt and 3-methoxyphenyl

Received 20 June 2006 Accepted 24 June 2006

O 2006 International Union of Crystallography All rights reserved

derivative (Kuleshova *et al.*, 2003) and an Sn complex of 3-(4nitrophenyl)-2-phenylacrylic acid (Sadiq-ur-Rehman *et al.*, 2004).

The benzene rings are oriented at 55.12 $(7)^{\circ}$ with respect to each other while the mean plane of the carboxylate group (C1/C2/O1/O2) lies at an angle of 77.33 (10)° with respect to the mean plane of phenyl ring C10–C15. The nitro group is twisted at an angle of 11.02 (13)° from the mean plane of benzene ring C4–C9.

Pairs of molecules lie parallel to each other in a head-to-tail fashion such that the nitrophenyl ring overlaps the phenyl ring of a symmetry-related molecule (symmetry code: $\frac{1}{2} + x$, $\frac{3}{2} - y$, 2 - z) and *vice versa*, thereby exhibiting strong π - π overlapping; the separation between the least-squares planes of these rings is 3.39 Å.

Experimental

A mixture of phenylacetic acid (0.15 mol), *p*-nitrobenzaldehyde (0.15 mol), anhydrous K_2CO_3 (0.095 mol) and acetic anhydride (0.38 mol) was slowly raised to 353–373 K and maintained at this temperature range for 24 h. To the hot solution, H_2O (200 ml) and 10% HCl (100 ml) were added. The mixture was stirred at room temperature for 2 h and filtered. The solid mass obtained was recrystallized from commercial ethanol. Yellow crystals of (I) suitable for crystallographic studies were obtained after three weeks.

Z = 4

 $D_x = 1.455 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 0.11 \text{ mm}^{-1}$

T = 173 (2) K

 $R_{\rm int} = 0.116$

 $\theta_{\rm max} = 28.3^\circ$

Prism, colorless

 $0.18 \times 0.15 \times 0.12 \ \mathrm{mm}$

26803 measured reflections

 $w = 1/[\sigma^2(F_0^2) + (0.055P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

Extinction correction: *SHELXL97* Extinction coefficient: 0.026 (4)

+ 0.248P]

 $(\Delta/\sigma)_{\rm max} = 0.002$

 $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}$

 $\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

1855 independent reflections

1280 reflections with $I > 2\sigma(I)$

Crystal data

 $\begin{array}{l} C_{15}H_{11}NO_4 \cdot H_2O\\ M_r = 287.26\\ Orthorhombic, P2_12_12_1\\ a = 7.578 \ (2) \ \text{\AA}\\ b = 10.282 \ (2) \ \text{\AA}\\ c = 16.832 \ (4) \ \text{\AA}\\ V = 1311.5 \ (5) \ \text{\AA}^3 \end{array}$

Data collection

Nonius KappaCCD diffractometer ω and φ scans Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{\min} = 0.980, T_{\max} = 0.987$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.114$ S = 1.081855 reflections 198 parameters H-atom parameters constrained

Tal	ble	1
-----	-----	---

Selected geometric parameters (A, °)				0	
	Selected	geometric	parameters	(Å,	°)

O1-C1	1.211 (3)	O4-N1	1.238 (3)
O2-C1	1.332 (4)	N1-C7	1.450 (4)
O3-N1	1.231 (3)		
O3-N1-O4	122.4 (3)	O4-N1-C7	119.0 (3)
O3-N1-C7	118.6 (3)		

ORTEPII drawing (Johnson, 1976) of the packing, showing the hydrogen bonding (dashed lines).

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
02-H2···O5	0.84	1.84	2.673 (3)	171
$O5-H51\cdots O4^{i}$	0.82	2.19	2.978 (3)	161
O5−H52···O3 ⁱⁱ	0.82	2.39	2.935 (3)	125
O5−H52···O1 ⁱⁱⁱ	0.82	2.42	3.159 (3)	151
$C11{-}H11{\cdot}{\cdot}{\cdot}O3^i$	0.95	2.54	3.476 (4)	170
Symmetry codes:	(i) $-x + \frac{1}{2}$,	$-y+1, z-\frac{1}{2};$	(ii) $-x, y - \frac{1}{2}$	$-z + \frac{1}{2};$ (iii)

 $x - \frac{1}{2}, -y + \frac{1}{2}, -z.$

Due to lack of significant anomalous dispersion effects, Friedel pairs were merged. The H atoms were located in difference Fourier syntheses and were included in the refinement at geometrically idealized positions, with C-H = 0.95 Å and O-H = 0.84 Å. The O-H bonds for water were fixed at 0.82 Å. During the refinement, $U_{\rm iso}({\rm H})$ values were set at 1.5 (hydroxyl) and 1.2 (the rest) times $U_{\rm eq}$ of the atoms to which they were bonded.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *SCALE*-*PACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SAPI91* (Fan, 1991); program(s) used to refine structure:

SHELXL97 (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

References

- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Canty, A. J. & van Koten, G. (1995). Acc. Chem. Res. 28, 406-413.
- Fan, H.-F. (1991). SAP191. Rigaku Corporation, Tokyo, Japan.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kuleshova, L. N., Khrustalev, V. N., Suponitsky, K. Y., Antipin, M. Y., Gusev, D. V. & Bobrikova, E. S. (2003). *Kristallografiya*, 48, 78–88; *Crystallogr. Rep.* 48, 73–83.
- Oldham, C., Wilkinson, G., Gillard, R. D. & McCleverty, J. A. (1987). Comprehensive Coordination Chemistry. p. 435. Oxford: Pergamon Press.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sadiq-ur-Rehman, Ali, S., Badshah, A., Malik, A., Ahmed, E., Jin, G.-X. & Tiekink, E. R. T. (2004). Appl. Organomet. Chem. 18, 401–408.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Tinant, B., Touillaux, R., Declercq, J. P., van Meerssche, M., Leroy, G. & Weiler, J. (1983). Bull. Soc. Chim. Belg. 92, 865–875.